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Abstract

For extended autonomous operation, rovers must iden-

tify potential faults to determine whether its execution

needs to be halted or not. At the same time, rovers

present particular challenges for state estimation tech-

niques: they are subject to environmental in
uences

that a�ect sensor readings during normal and anoma-

lous operation, and the sensors 
uctuate rapidly both

because of noise and because of the dynamics of the

rover's interaction with its environment. This paper

presents MaKSI, an on-board method for state esti-

mation and fault diagnosis that is particularly appro-

priate for rovers. The method is based on a combi-

nation of continuous state estimation, using Kalman

�lters, and discrete state estimation, using a Markov-

model representation.

1 Introduction

Rovers that operate autonomously for extended pe-
riods of time must be able to detect and diagnose
anomalous situations and recover from faults that
do not require ground-operator intervention. Rovers
present characteristics that make this problem chal-
lenging. They receive streams of continuous-valued
sensor data that 
uctuate with noise and environmen-
tal interactions. From this data they must infer the
presence of nominal and o�-nominal states, but these
states depend on the situation. The boundaries of
states can change depending on the context: for ex-
ample, a high current driving uphill or over an obsta-
cle may be normal, but a high current on smooth, 
at
ground may indicate an anomaly. In addition, the set
of anomalous states can change: for example, the set
of possible anomalies will be di�erent for driving and
taking pictures. Moreover, rovers are limited in power
and weight, which in turn limits processor speed and
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memory. They must therefore use computationally ef-
�cient procedures for state estimation.

The rover state can be thought of as transitioning
among a set of possible, qualitatively di�erent states.
These states may correspond to operational modes of
the rover (e.g., driving) or fault modes (e.g., broken
wheel gear)1. Transitions may be explicit, based on
actions taken by the rover executive (e.g., stopped to
driving), or implicit, based on sensor information (e.g.,
wheel encoder nominal to broken).

Sensor failures may be inferred from the diagnosis, and
a failure should then in
uence future state estimation
and diagnosis. For example, driving with a broken en-
coder will give rise to di�erent \normal" sensor read-
ings for the broken encoder.

Two major branches of work for state estimation and
fault diagnosis are Kalman �lters from control theory
and qualitative model-based diagnosis from arti�cial
intelligence. State estimation for rovers exceeds the
capabilities of the current approaches.

Qualitative model-based techniques for diagnosis [2, 6]
rely on the system transitioning occasionally from

one steady state to another. Rovers receive rapidly-
changing streams of continuous-valued sensor data. In
addition, the model-based techniques often rely on a
snapshot of the system, disregarding history. But in
fact the history may be critical to reach a correct di-
agnosis; the probability of a particular failure may be
signi�cantly di�erent based on the prior state. In ad-
dition, the qualitative approaches rely on global con-
sistency to compensate for the local inaccuracy of a
qualitative model; this can be expensive to compute,

Techniques for state estimation of continuous values,
such as Kalman �lters [3], can track multiple hypothe-
ses [7, 10], but they lack methods for automatially
choosing which states to track. Tracking all possible

1In fact, the complete set of states is the cross product of

the operational modes with the powerset of the possible fault

modes. For modeling reasons some states are often combined

with equivalent or similar states.



states is infeasible.

In this paper, we present MaKSI (Markov and
Kalman State Identi�cation), which combines continu-
ous probabilistic state estimation using Kalman �lters
(KFs) with discrete qualitative state estimation us-
ing a Markov-model representation [4]. The discrete
states correspond to qualitatively di�erent modes of
the rover (driving nominally, idle, stuck wheel, etc),
to each of which is associated a model of operation
represented as KF parameters. The development of
MaKSI arose from experience with model-based tech-
niques in the NASA Ames 1999 Marskohod �eld test,
and it borrows some ideas from the model-based tech-
niques. Di�erences include the addition of quantita-
tive information via KFs, context-speci�c probabilities
of state transitions, and computational guarantees.

On-board techniques must work within constraints on
computation and memory. MaKSI builds on our own
and others' work on e�ciently tracking belief states
[9, 1] and continuous variables [7].

2 Combining discrete and con-

tinuous state estimation

TheMaKSI approach to state estimation is built from
Kalman �ltering and Markov-model representations.
Before discussing the complete approach, we brie
y
introduce the components from which it is built.

2.1 Kalman �ltering

The Kalman �lter (KF) is designed to estimate the
state of a process given observations. Here we con-
sider the standard, discrete KF, which is su�cient for
our initial experiments. More complex KFs can be for-
mulated for nonlinear processes and observations and
for continuous time. In the standard, discrete KF, the
process is assumed to evolve linearly given the previ-
ous state and a control input:

xt+1 = Atxt +But + wt (1)

where xt is the state (vector) at time t, ut is the
control input, and wt is white, zero-mean, normally-
distributed noise. The process is observed through
measurements related linearly to the process state:

zt = Htxt + vt (2)

where zt is the measurement (vector) and vt is white,
zero-mean, normally-distributed noise.

At each time step, the estimate of the state is �rst
updated using information about the state model, the

control input, and the process noise. This estimate
(the a priori state estimate, x̂�t ) is then fed through
the observation model. The observation model is used
to predict what observations should be seen. These
are compared against the actual observations, and the
di�erence is used to modify the a priori state estimate,
arriving at the new, a posteriori state estimate, x̂+t .

The observation noise, in the form of a covariance ma-
trix, is used to update the Kalman gain matrix, which
is the weighting factor used to combine the a priori

state estimate and the observation di�erences. The
gain matrix also depends on the state error covariance
matrix, which is de�ned as:

Pt = E[(xt � x̂t)(xt � x̂t)
T ] (3)

The error covariance matrices are updated over time.

The KF �nds the optimal estimate of the process state
(under the assumptions of the model), minimizing the
expected least-squares error. Brie
y, the �lter oper-
ates by �rst predicting the state using the state update
equations, then correcting the prediction using an ob-
servation. Error covariances of the state and the ob-
servation contribute to \weight" the model, balancing
the state model (the prediction) and the observation.

Details of KFs can be found in [5, 3], among others.

2.2 Markov-model representation

While Kalman �lters handle the problem of state es-
timation in a continuous space, they do not o�er any
assistance when the state branches into two or more
qualitatively di�erent states. In contrast, the stan-
dard model for Markov decision processes (MDPs) is
a set of discrete states with probabilistic transitions
among the states. In the case of partially-observable
MDPs (POMDPs), the estimation of the current sys-
tem state is represented by a probability distribution
over the set of discrete states.

A standard POMDP model consists of a set of states,
S, a set of actions A, and a set of observations O. The
model also contains a transition matrix T , of size jSj�
jSj � jAj, where tijk is the probability of transitioning
from state si to state sj when action ak is chosen.
In a standard POMDP model, there is an observation
matrix Q of size jSj � jOj, where qij is the probability
of seeing observation oj when in state si. In MaKSI,
we do not have this direct information, but we use an
indirect calculation via the Kalman state estimate.

Finally, the probability distribution over states at time
t is denoted as �(t), where �i(t) is the probability that
the true state is si given information about actions and
observations.



Given an observation oj and an action ak, the state
distribution is updated according to the following for-
mula:

�i(t) =
qij
P

1�l�jSj plik�l(t)P
1�m�jSj qmj

P
1�l�jSj plmk�l(t)

; (4)

As mentioned earlier, we modify this (see the following
subsection) to use an indirect computation of qij .

Since the goal of state identi�cation is to �nd the best
estimation of the current state as a passive operation,
the parts of the POMDP model for control (rewards
and policies) are not applicable to this problem.

2.3 Combining discrete and continu-

ous models

The basic idea behind MaKSI is to consider the sys-
tem as a set of discrete states, but rather than treat-
ing each as a static situation, the dynamics within
the state are represented using a Kalman �lter. We
start from the POMDP model and augment it with el-
ements from the KF model. We use the term discrete

state to represent the qualitatively distinct, POMDP-
level discrete state of the system, and the term system

state to represent the state vector of the actual system
parameters at the KF level.

As in the POMDP model, MaKSI represents the sys-
tem as a set of discrete states S and a set of discrete
actions A. We de�ne a set of transition actions � as:

� =

"[
a2A

fstart(a); end(a)g

#
[ fnullg:

These correspond to starting action a, ending action
a, and the null action (an implicit, data-driven transi-
tion). Similar to the POMDP model, we have a tran-
sition matrix T of size jSj � jSj � j�j, where tijk is
the probability of transitioning from discrete state si
to state sj when transition action �k is taken2. Since
there is a di�erence between transitioning from si to si
and remaining in state si (see below), we consider the
probability of remaining in state si given transition
action �k to be 1�

P
1�j�jSj tijk .

Each discrete state s has associated with it a KFmodel
and a set of constraints describing the value space V (s)
of possible system state values. In general the value
space can be any subset of the possible system state
values; for e�ciency, we restrict the constraints to be
univariate and linear, de�ning a (potentially in�nite)

2Note that the implicit transitions are thus dependent on the

time step. See Section 4 for possible remedies for this.

hypercube value space. The KF model has a state
and observation vector of the same length, where state
element x̂[i] is the best estimate of the value observed
as observation element o[i].

Unlike the standard POMDP model, the observation
probability matrix Q cannot be statically predicted
from the discrete state. Instead, we approximate this
by an indirect computation via the KF state:

qij � Prob(oj jK) � Prob(Kjsi) (5)

The element Prob(oj jK) is itself approximated as the
volume of the multidimensional normal distribution
function, described by the Kalman estimated state
and state error covariance, beyond oj (more precisely,
1� the volume of the minimum error ellipse enclosing
oj). In the multivariate case this is further approxi-
mated as a product over individual dimensions:

Prob(oj jK) �
Y

1�i�n

f(oj [i]; x̂(K)[i]; P (K)[i; i]) (6)

where n is the length of any observation vector, oj [i]
is the ith element of the observation vector oj , x̂(K)
is the KF estimated state, P (K) is the KF state er-
ror covariance matrix, and f() is the probability that
an individual observation element is predicted by the
state estimate and standard deviation in that dimen-
sion3. The element Prob(Kjsi) is the volume of the
Kalman-described normal distribution function that
falls within the value space of si; this is approximated
for computational e�ciency as a product of the indi-
vidual dimensions:

Prob(Kjsi) �
Y

1�i�n

Prob(x̂(K)[i] 2 V (si)[k]): (7)

The normal distribution computations are performed
e�ciently by table lookup and interpolation.

The approximation to the observation probability qij
is then plugged back into the POMDP state distribu-
tion update function (Eq. 4), which is used to arrive at
the new probability distribution over possible states.

The update function can be seen intuitively as com-
bining context-speci�c probability (the transition ma-
trix), data-model compatibility (Prob(Kjsi)), and
model predictiveness (Prob(oj jK)). So a discrete state
with a high probability in the state distribution will
be appropriate for the context, its model will produce
a state estimate that is highly compatible with the
value space constraints, and the observations will be
highly consistent with the state estimate.

3This assumes independence of the observation vectors,

which is a simplifying, but not necessarily accurate assumption.



One complication of using dynamic state models is
that the KF system state depends on the initial condi-
tions of the model. As the system predicts a transition
from one discrete state to another, the system state in
the new discrete state must inherit the system state
from the previous state. Thus not all instances of a
discrete state are equivalent. For example, consider
two discrete states, one with wheel current rising, a
second with steady wheel current. A later transition
from rising to steady will imply a higher steady wheel
current than an earlier transition. This is an impor-
tant di�erence from standard POMDP-model repre-
sentations and raises the danger of model explosion.

MaKSI limits this by maintaining a constant-size
distribution over discrete states. makes Thus the
POMDP state distribution update is constant with
respect to the number of states [9]4. The KF updates
involve matrix multiplications and inverses, so they
are of order O(n3), where n is the size of the KF sys-
tem state vector5. If the system state vector can be
decomposed into independent subsets, the KF update
depends on the size of the largest subset.

The danger of limiting the discrete state distribution
to a constant size is that the state distribution up-
date formula may produce a null distribution, with all
elements 0. We have shown in [8] methods for over-
coming this problem; these will be incorporated into
the �nal implementation.

We thus have a way of trading o� computational
complexity for model accuracy. The size of the dis-
crete state distribution can be tailored to the compu-
tational constraints of the application; in planetary
rovers, with their relatively impoverished computa-
tional power, this may be essential.

3 Experimental validation

We have constructed a prototype implementation of
MaKSI and tested it on telemetry data gathered from
the Marsokhod rover. The Marsokhod is a medium-
sized planetary rover with six, independently driven
wheels. For the experiments, the right rear wheel had
a broken gear, so it rolled passively. The Marsokhod
is instrumented with sensors that measure pose, wheel
odometry and currents, and battery currents.

The data used in this paper were collected in an out-
door \sandbox," which is a gravel and sand area with

4This depends both on a constant bound on the set of tran-

sitions from any state and on the fact that each instance of a

discrete state is in general distinct from other instances, so that

state transitions form a chain without loops (except self-loops).
5Using straightforward multiplication for small matrices.

assorted rocks and small hills. The only actions for
this preliminary experiment were driving commands,
in arbitrary directions and with varying topography.

For the prototype system, we used wheel current and
wheel speed (di�erences between successive encoder
values), along with the variation for current and speed
(absolute value of di�erences between successive val-
ues). We ran 6 independent state identi�cation pro-
cesses, one per wheel. Each state identi�cation process
had identical starting conditions, so the only di�erence
was in the data each received.

The discrete states corresponded to idle states, driv-
ing states, and intermediate states (ramping up cur-
rent and speed at the beginning of an action, dropping
current and speed at the end of an action). These
states were replicated for a small set of fault modes,
including a stalled motor, a broken gear, and a broken
gear and a broken encoder (the latter of these was in
fact the case on the right rear wheel). The KF models
were constructed crudely and by hand to model the
approximate dynamics in each situation; more care-
ful and detailed models should lead to more accurate
state identi�cation, but the hypothesis was that this
would be su�cient for the prototype test.

See Figure 1 for data from one such experiment (Ex-
periment 1). States 0{2 are non-commanded idle and
transition states, states 3{8 are normal driving states
(state 6 in particular is steady-state driving), and
states 9{22 are error states (19{22 are the broken gear
and broken encoder condition). In general the highest-
probability state corresponds to the correct state. The
broken wheel is correctly diagnosed (because of the
lack of current variation); this requires a number of
data points to overcome the small a priori probabil-
ity. However, in the left rear wheel, an interval of 
at
motor current leads to a momentary shift of belief to-
wards a fault state (a broken wheel). When the data
vary again, the belief in the broken wheel disappears.

Although the preliminary results have been encourag-
ing, a handful of cases cause problems. Figure 2 shows
one case (Experiment 2) where, for an unknown rea-
son, the currents 
attened out for long enough that 4
of the 5 working wheels incorrectly identi�ed a fault
state. The broken wheel correctly identi�ed its fault,
except for one interval where its current inexplicably
showed some variation. These errors could be over-
come by tuning the transition probabilities, but that
was not the point of this initial experiment.

Of the 50 test cases, a few also produced null distribu-
tions. This can arise from modeling errors; for exam-
ple, there was no model for a crashed motor controller.
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Figure 1: State estimates and wheel currents for each wheel, Experiment 1. The highest probability state is in
fact the correct one except for a momentary misidenti�cation in the left rear wheel.
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Figure 2: State estimates and wheel currents for each wheel, Experiment 2. Anomalies in the data give rise to
state identi�cation errors. A broken gear is found as the most likely state when the wheel currents 
atten out.
The broken wheel is momentarily labeled as working when the data vary unexpectedly.
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Figure 3: Elapsed time to update belief state for all 6
wheels, Experiment 1.

It can also be a result of the belief state truncation,
which demonstrates the need to add mechanisms to
avoid that (see Section 2.3).

The computational performance of the state identi-
�cation program is promising. The prototype state
identi�cation system was coded in Java and tested on
a Sun Ultra-2 (266 MHz), which is of the same order
as our test rover platforms. The time required for the
state estimation process in Experiment 1 can be seen
in Figure 3. This is time to update all 6 wheels, for
each of which there is a belief state of size 16 (hence
16 KFs per wheel, for a total of 96 KFs updated at
each step). The update time is consistently just under
a second while the rover is active, and less when idle.

4 Discussion

We have demonstrated an approach for computation-
ally e�cient state and fault identi�cation that is par-
ticularly appropriate for the dynamic environment and
noisy data encountered by an outdoor mobile robot.
We envision this approach as a prototype for future
planetary rovers, where accurate and e�cient state
identi�cation is a critical element of long-term au-
tonomous operation.

The approach presented here is a preliminary attempt
to model and represent the states encountered by a
rover. An obvious re�nement is to develop more care-
ful and complete models of rover operations. Although
the crude models produce generally reliable state iden-
ti�cation, they are imperfect; more precise models
should lead to more accurate identi�cation. Also,
the KF model used for the prototype is a standard,
discrete-time KF. This is a reasonable �rst approx-
imation, but a more sophisticated KF model would
support the more accurate models needed of the rover.

A KF model has a large number of parameters that
can be adjusted. In the prototype, these were set to

intuitively reasonable values by hand. These could
be inferred from a larger corpus of experimental data.
Additionally, the transition probabilities of the dis-
crete states were equally hand-set. Anomalies such as
the broken-wheel misidenti�cation could be reduced
by tweaking parameters, but ideally this would be in-
formation gathered from long-term experience with a
platform (to gather reasonable fault probabilities).

As mentioned in Section 2.3, the approach needs to
be extended to handle the case where a null distri-
bution may arise. This should be a straightforward
application of the work in [8].

Finally, the underlying probabilistic reasoning relies
on a number of approximations. Understanding the
relationship of the approximations to the complete,
accurate probabilities is an important piece of under-
standing the quality of the approach as a whole.
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